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Abstract

We introduce a discretization for a nonlocal diffusion problem using a localized
basis of radial basis functions. The stiffness matrix entries are assembled by a
special quadrature routine unique to the localized basis. Combining the quadra-
ture method with the localized basis produces a well-conditioned, sparse, sym-
metric positive definite stiffness matrix. We demonstrate that both the contin-
uum and discrete problems are well-posed and present numerical results for the
convergence behavior of the radial basis function method. We explore approxi-
mating the solution to anisotropic differential equations by solving anisotropic
nonlocal integral equations using the radial basis function method.
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1. Introduction

The purpose of this paper is to introduce a meshfree method for the solution
of an anisotropic nonlocal diffusion equation. We apply a recently developed
approximation and interpolation scheme to construct a discretization space. We
introduce a quadrature method unique to the discretization that enables assem-
bly of a sparse stiffness matrix. The entries in the stiffness matrix are computed
by pointwise evaluations of a kernel and multiplication by quadrature weights.
In contrast, evaluating entries in the stiffness matrix for a piecewise polynomial
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finite element discretization remains a challenging quadrature problem. Eval-
uating entries in the stiffness matrix for a problem in Rn requires 2n-iterated
integrals over partial element volumes. The paper [1] explored radial basis
function methods for the discretization of the nonlocal diffusion equation by a
localized basis and an associated quadrature routine. The approach presented
in this paper reduces the computational difficulty of both the construction of
the quadrature weights and the evaluation of the solution on a set of points. In
particular, our approach maintains the same benefits of the radial basis function
method in [1] while avoiding the solution of large, dense linear systems. More-
over, we extend the results of [1] by considering anisotropic nonlocal diffusion
equations and demonstrating that both the continuum and discrete problems
are well-posed.

Section 2 briefly discusses aspects of the nonlocal vector calculus we require
to formulate the nonlocal diffusion problem. We also consider comparisons with
the classical diffusion problem. Section 3 discusses radial basis functions that are
used in the construction of the discretization space. Section 3.1 introduces the
local Lagrange functions that are used to produce the approximation spaces for
the discretization method. The quadrature method unique to the discretization
is introduced in Section 4. Section 5 introduces the discretization method for
the nonlocal diffusion problem and investigates theoretical properties of the
method. Numerical experiments for the discretization of the nonlocal diffusion
problem are discussed in Section 6. In addition to studying the discretization
of nonlocal diffusion problems, Section 6.3 presents experiments that consider
approximating the solution to an anisotropic differential equation by discretizing
and solving an anisotropic nonlocal diffusion problem. For notation, we let
bold lower case letters indicate vectors and unbolded lower case letters indicate
scalars. Bold upper case letters are reserved for operators and matrices.

2. Nonlocal Vector Calculus

In this section, we present topics from the nonlocal vector calculus required
to define the nonlocal diffusion equation. The nonlocal vector calculus developed
in [7] provides nonlocal analogues of classical operators such as the gradient,
divergence, and curl operators.

Let ν(x,y), α(x,y) : Rn×Rn → Rk where α is an anti-symmetric mapping,
i.e., α(x,y) = −α(y,x). The nonlocal divergence operator D acts on ν by(

Dν
)
(x) :=

∫
Rn

(
ν(x,y) + ν(y,x)

)
· α(x,y) dy.

The adjoint operator D∗ acts on u(x) : Rn → R pointwise by

D∗(u)(x,y) = −
(
u(y)− u(x)

)
α(x,y) for x,y ∈ Rn,

where D∗u : Rn × Rn → Rk.
For an open subset Ω ⊂ Rn, we define the interaction domain

ΩI := {y ∈ Rn\Ω : α(x,y) 6= 0 for some x ∈ Ω}. (1)
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Given f : Ω → R and g : ΩI → R, we are interested in solving the weak
formulation of the steady-state nonlocal diffusion problem{

Lu = f on Ω,

u = g on ΩI ,
(2)

where Θ(x,y) is a second-order tensor satisfying Θ = ΘT , and the nonlocal
diffusion operator is given by

Lu(x) = 2

∫
Ω∪ΩI

(
u(y)− u(x)

)
α(x,y) ·

(
Θ(x,y) · α(x,y)

)
dy , x ∈ Ω . (3)

In contrast to classical diffusion models that impose boundary conditions,
the nonlocal model enforces conditions over a positive measure volume, or a
volume constraint. This constraint guarantees that the weak formulation of
(2) is well-posed provided conditions on the kernel. For integrable kernels, the
paper [2] demonstrates that (2) is well-posed on the space L2

c(Ω ∪ ΩI) = {u ∈
L2(Ω ∪ ΩI) : u|ΩI = 0 a.e.}. Let u ∈ L2(Ω ∪ ΩI) and let γε := α · Θ · α be a
radial kernel with support radius, or horizon, ε. Under general conditions, as
ε→ 0, the solution uε of (2) converges to the solution of{

∇ ·C∇u = f on Ω

u = g on ∂Ω ,
(4)

where C is a diffusion tensor. The interested reader should also consult [2, §3
pp.674-678] for further exposition on nonlocal operators, comparisons between
nonlocal diffusion and classical diffusion equations, and comparisons with the
classical vector calculus and the nonlocal calculus. The recent paper [3] dis-
cusses the nonlocal analogue of (4) with a Neumann boundary condition and
relationship with a smoothed particle hydrodynamic approximation.

We now demonstrate that the solution u of the nonlocal diffusion equation
(2) is the minimizer of a variational problem, the weak formulation of (2). Let
Ω ⊂ Rn be an open region and let ΩI be the corresponding interaction domain
as defined in (1). The energy functional is defined to be

E(u; f) :=
1

2

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(u)(x,y) ·
(
Θ(x,y) · D∗(u)(x,y)

)
dx dy

−
∫

Ω

f(x)u(x) dx

where f is a given function defined on Ω. Let g(x) be a function defined on ΩI
and let Ec(u; g) denote the constraint functional

Ec(u; g) :=

∫
ΩI

(
u(x)− g(x)

)2
dx. (5)

We consider the constrained minimization problem

minE(u; f) subject to Ec(u; g) = 0.
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The constraint functional may be interpreted as a nonlocal Dirichlet volume
constraint analogous to Dirichlet boundary conditions for differential equations.
By considering test functions v that satisfy Ec(v; 0) = 0, we arrive at the nec-
essary conditions for the minimization problem∫

Ω∪ΩI

∫
Ω∪ΩI

D∗(u)(x,y) ·
(
Θ(x,y) ·D∗(v)(x,y)

)
dy dx =

∫
Ω

f(x)v(x) dx. (6)

To relate (6) to (2), we require a nonlocal analogue of Green’s first identity.
Define the interaction operator N (ν) : Rn → R by

N (ν)(x) := −
∫

Ω∪ΩI

(
ν(x,y) + ν(y,x)

)
· α(x,y) dy for x ∈ ΩI .

The nonlocal Green’s first identity is∫
Ω

vD
(
Θ·D∗u

)
dx−

∫
Ω∪ΩI

∫
Ω∪ΩI

(
D∗v

)
·
(
Θ·D∗u

)
dy dx =

∫
ΩI

vN
(
Θ·D∗u

)
dx. (7)

We apply (7) to (6) and note that v = 0 in ΩI to obtain∫
Ω

v(x)D
(
Θ · D∗u

)
(x) dx =

∫
Ω

f(x)v(x) dx. (8)

Because v is arbitrary, the minimizer u satisfies

−Lu = DΘ · D∗u = f on Ω,

u = g on ΩI .

2.1. Discretization of the Variational Problem

Let Ω ⊂ Rn be an open region and let ΩI be the interaction domain cor-
responding to Ω, as defined in (1). Let u, v ∈ L2(Ω ∪ ΩI), f ∈ L2(Ω), and
g ∈ L2(ΩI). We define the nonlocal bilinear form a(·, ·)

a(u, v) :=
1

2

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(u)(x,y) ·
(
Θ(x,y) · D∗(u)(x,y)

)
dy dx. (9)

The nonlocal bilinear form induces a semi-norm |||u||| =
√
a(u, u) on L2(Ω ∪

ΩI), which is equivalent to the L2(Ω∪ΩI) norm for functions restricted to the
constrained energy space

L2
c(Ω ∪ ΩI) := {u ∈ L2(Ω ∪ ΩI) : |||u||| <∞ and u|ΩI = 0 a.e.}.

We seek u ∈ L2
c(Ω ∪ ΩI) such that for all v ∈ L2

c(Ω ∪ ΩI),

a(u, v) =

∫
Ω

f(x)v(x) dx. (10)
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The coercivity and boundedness of the bilinear form on L2
c(Ω∪ΩI) along with

the boundedness of the linear form on the right hand-side of (10) implies that the
anisotropic problem is well-posed by the Lax-Milgram theorem on L2

c(Ω ∪ ΩI)
[2, Lemma 4.7]. The problem is discretized by a finite-dimensional subspace
Vh = span{φi}Ni=1 ⊂ L2

c(Ω ∪ ΩI). The resulting discrete problem seeks uh =∑N
i=1 ciφi ∈ Vh such that for all vh ∈ Vh,

a(uh, vh) =

∫
Ω

f(x)vh(x) dx.

The resulting linear system Ac = b has entries given by

Ai,j = a(φi, φj) bi =

∫
Ω

f(x)φi(x) dx. (11)

In Section 5, we present a discretization using a localized basis of radial basis
functions that generates a well-conditioned, sparse stiffness matrix.

In Section 6.3, we present numerical experiments that study the approxima-
tion of the solution to a differential equation by solving a discretized nonlocal
anisotropic problem.

3. Radial Basis Functions

We discuss relevant background information on radial basis functions and
interpolation in this section. Radial basis functions (RBFs) are used to construct
the approximation space for the Galerkin method we propose in Section 5. Let
Ω ⊂ Rn and Φ : Ω→ R be a continuous function. We say that Φ is radial if there
exists ϕ : R+ → R such that Φ(x) = ϕ(‖x‖) for all x ∈ Rn. Let {xi}Ni=1 = X ⊂
Ω be a collection of scattered points, referred to as centers. A set of radial basis
functions {Φi}Ni=1 is constructed by setting Φi(x) = Φ(x− xi) = ϕ(‖x− xi‖).
Given a continuous function f : Ω → R, an interpolant IXf =

∑N
i=1 ciΦi(x) is

constructed by enforcing

f(xi) =
N∑
j=1

cjϕ(‖xi − xj‖) i = 1, . . . , N, (12)

provided that the resulting linear system of equations has a unique solution. We
say a function Φ is positive definite if for any set of scattered points {xj}Nj=1,

the quadratic form
∑N
i=1

∑N
j=1 αiαjΦ(xi − xj) is positive. This condition im-

plies that equation (12) admits a unique solution for any set of centers. Ex-
amples of positive definite functions include the Gaussians ϕ(r) = exp(−αr2),
the compactly supported Wendland functions, and the inverese multiquadrics
ϕ(r) = (r2 + c2)−β for β, c > 0. The interested reader should consult [11] or [4]
for further details on radial basis functions and interpolation.

The basis we construct in Section 3.1 requires conditionally positive definite
functions. Let ΠL(Rn) = span{pl}nLl=1 denote the space of polynomials of degree
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less than L on Rn. We say that ϕ(r) is conditionally positive definite of order L if

for any set of centers {xi}Ni=1 and any α 6= 0 ∈ RN satisfying
∑N
i=1 αip(xi) = 0

for p ∈ ΠL(Rn), the quadratic form
∑N
i=1

∑N
j=1 αiαjϕ(‖xi − xj‖) is positive.

For example, the surface spline

ϕ(r) =

{
r2m−n n is odd

r2m−n log(r) n is even
(13)

is conditionally positive definite of order m on Rn. Conditionally positive def-
inite RBFs can construct unique interpolants for scattered data provided ad-
ditional polynomial constraints. Given centers {xi}Ni=1 and data {f(xi)}Ni=1,

the interpolant IXf =
∑N
j=1 cjϕ(‖x − xj‖) +

∑nL
l=1 dlpl(x) is constructed by

enforcing

f(xi) =

N∑
j=1

cjϕ(‖xi − xj‖) +

nL∑
l=1

dlpl(xi) for i = 1, . . . , N,

0 =

N∑
j=1

cjpl(xj) for l = 1, . . . , nL.

(14)

Constructing the coefficients for IXf requires solving an (N + nL)× (N + nL)
dense, symmetric linear system. In section 3.1, an alternative radial basis func-
tion method that does not require the solution of a system of size N + nL is
discussed.

The geometry of the centers is important for estimating the approximation
quality of the RBF interpolant and for estimating the condition number of the
interpolation matrix. RBF interpolation offers the advantage of not requiring
regular distributions of points; arbitrarily scattered centers produce invertible
interpolation matrices for positive definite functions. Let X ⊂ Ω ⊂ Rn be a
set of scattered centers. We define the mesh norm (or fill distance) h to be
the radius of the largest ball in Ω that does not contain any centers and we
define the separation radius q to be the minimal pairwise distance between the
centers. See Figure 1 for a visual example of the mesh norm. These quantities
are mathematically defined by

h = sup
x∈Ω

min
xj∈X

‖x− xj‖, q = min
xi,xj∈X

‖xi − xj‖, ρ =
h

q
, (15)

where the mesh ratio ρ provides a means of judging how well distributed the
points are. Informally, for ρ near one, the centers are almost uniformly dis-
tributed and large ρ indicates clustering of centers. We say that collections of
centers {Xh,q} are quasi-uniformly distributed if there exists positive constants
C1, C2 such that

C1q ≤ h ≤ C2q. (16)

Geometrically, this condition controls how the centers cluster as the density of
points increases. We note that for the quasi-uniformly distributed collections

6

S
an

di
a 

N
at

io
na

l L
ab

s 
S

A
N

D
 2

01
5-

05
11

J



Figure 1: The mesh norm is the radius of the largest ball which does not contain any centers.

of centers {Xh,q}, we do not require that any of the point sets are nested in
another.

The approximation error between f and IXf can be quantified in terms of
the geometry of the scattered centers. Let ϕ(r) denote the surface spline of
order m on Rn and let W k

2 (Ω) denote the Sobolev space of order k.

Theorem 1. [10, Theorem 4.2] Let f ∈W β
2 (Ω) for n

2 < β ≤ m. Then, for any
0 ≤ µ < β,

‖f − IXf‖Wµ
2 (Ω) ≤ Chβ−µ‖f‖Wβ

2 (Ω). (17)

3.1. Lagrange Functions and Local Lagrange Functions

We discuss a localized basis for interpolation and approximation using linear
combinations of surface splines in this section. Let X ⊂ Ω be a set of N
centers and let ϕ(r) denote the surface spline of order m. For each xi ∈ X,
there exists a unique interpolant χi that satisfies χi(xj) = δi,j . We refer to
the basis {χi(x)}Ni=1 as the Lagrange basis and χi as the Lagrange function
centered at xi. The interpolant to a continuous function f can be written as
a linear combination of Lagrange functions and function samples by IXf =∑N
i=1 f(xi)χi(x). The χi functions are constructed by solving the (N + nL)×

(N + nL) linear system (14) for each χi. This is a computational issue that
has limited the exploration and use of Lagrange functions. Previous work used
Lagrange functions for discretization of the nonlocal problem [1].

We discuss the construction of local Lagrange functions that are constructed
more efficiently than the full Lagrange functions. The discretization we intro-
duce in Section 5 uses local Lagrange functions for compact domains Ω ⊂ Rn.
Let X ⊂ Ω be a set of scattered centers with mesh norm h and separation radius
q and let K > 0 be a fixed constant. To construct the local Lagrange functions,
additional centers outside of the domain Ω are included in a larger set of points
Ξ ⊃ X. Let Ω̃ = {x ∈ Rn : d(x,Ω) ≤ Kh| log(h)|}. A set of centers Ξ can
be constructed such that Ξ ∩ Ω = X and Ξ has mesh norm h in Ω̃. For each
xi ∈ X, let Υi = {y ∈ Ξ : d(xi,y) ≤ Kh| log(h)|}. The local Lagrange function
centered at xi has the form

bi(x) =
∑
y∈Υi

αη,iϕ(‖x− y‖) +

nL∑
l=1

βl,ipl(x) (18)
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and the coefficients are constructed by solving(
Si P
P T 0

)(
αi

βi

)
=

(
ei
0

)
(19)

where Si(y, z) = ϕ(‖y−z‖) for y, z ∈ Υi, P (y, l) = pl(y) and ei(y) = δ(xi,y).
The cardinality of Υi can be estimated by using the separation radius q and a
volume estimate. Applying quasi-uniformity (16) and noting that every center
is separated by at least q, we estimate

#|Υi| ≤
µ
(
B(xi,Kh| log(h)|)

)
µ
(
B(xi, q)

) ∼ Knhn

Cqn
| log(h)|n ≤ C̃ρn| log(N)|n.

For quasi-uniformly distributed sets of centers, h
q := ρ is bounded above and

below by fixed constants. Therefore, constructing a local Lagrange function
requires solving linear systems of size O

(
log(N)n

)
as opposed to O(N) for the

full Lagrange functions. The local Lagrange functions provide approximation
rates analogous to known approximation rates for globally supported Lagrange
functions.

Lemma 1. Let n
2 < k ≤ m and let Ω ∪ ΩI ⊂ Rn. Let f ∈ W k

2 (Ω ∪ ΩI) be a
compactly supported function such that f |ΩI = 0. Then, for sufficiently large

K, the quasi-interpolant ĨX(f) =
∑N
i=1 f(xi)bi satisfies

‖f − ĨXf‖L2(Ω) ≤ Chk‖f‖Wk
2 (Ω).

Proof. We assume the set of centers Ξ ⊂ Ω ∪ ΩI with X := Ξ ∩ Ω. Let χi be
the Lagrange functions centered at xi and bi denote the local Lagrange function
centered at xi. Then,

‖u−
N∑
i=1

u(xi)bi‖L2(Ω∪ΩI) ≤ ‖u−
N∑
i=1

u(xi)χi‖L2(Ω∪ΩI)

+ ‖
N∑
i=1

u(xi)(χi − bi)‖L2(Ω∪ΩI).

We note that
∑N
i=1 u(xi)χi is the Lagrange function interpolant to u using the

set of centers in Ξ ⊂ Ω∪ΩI , and hence we may apply radial basis function error
estimates (17) on Ω ∪ ΩI to find

‖u−
N∑
i=1

u(xi)χi‖L2(Ω∪ΩI) ≤ Chk‖u‖Wk
2 (Ω∪ΩI).
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Next, we apply Theorem 4.10 [8] to bound ‖bξ − χξ‖L2(Ω∪ΩI). Noting that

N ≤ Cq−d for quasi-uniformly distributed sets and applying the Sobolev em-
bedding theorem to bound ‖u‖L∞(Ω∪ΩI) ≤ C‖u‖Wk

2 (Ω∪ΩI), we compute

‖
n∑
i=1

u(xi)(bi − χi)‖L2(Ω∪ΩI) ≤ Cq−n‖ui‖`2(N) sup
i
‖bi − χi‖L2(Ω∪ΩI)

≤ q−2n‖u‖L∞(Ω∪ΩI)h
Kν\2−4m+2n−2τ−1

≤ ChKν\2−4m−2τ−1‖u‖Wk
2 (Ω∪ΩI).

Therefore, for sufficiently large K, the exponent on the h term is at least as
large as k. Combining the two inequalities yields the result.

We sometimes refer to the Lagrange function at xi as the full or global La-
grange function to contrast it with the local Lagrange function at xi, which
is constructed using only points near xi. Local Lagrange functions were first
introduced on the sphere [5] where decay properties, quasi-interpolation con-
vergence rates, and preconditioners were studied. The local Lagrange basis can
be constructed in parallel by solving small (relative to the number of centers)
linear systems. This should be contrasted with previous radial basis function
methods that require solving large dense linear systems. Recent work by [8] has
extended theoretical properties of the local Lagrange basis to compact domains
in Rn.

4. Local Lagrange Quadrature

We introduce a quadrature method for compactly supported functions in Ω
that is essential for the implementation of the Galerkin method we introduce
in Section 5. Let f ∈ W β

2 (Ω) be compactly supported in Ω and let X ⊂ Ω be
a collection of N centers. Let χi(x) be a globally supported Lagrange function
centered at xi ∈ X and let bi be a local Lagrange function centered at xi. We
define the quadrature weight at xi to be wi =

∫
Ω
χi(x) dx and the Lagrange

function quadrature rule to be QX(f) =
∑N
i=1 f(xi)wi. Similarly, we define the

local quadrature weight at xi to be ŵi =
∫

Ω
bi(x) dx and the local quadrature

method Q̂X(f) =
∑N
i=1 f(xi)ŵi. We demonstrate that the quadrature error

decreases as the mesh norm decreases.

Lemma 2. Let f ∈ W β
2 (Ω) be compactly supported for n

2 < β ≤ m. Then, for
sufficiently large K, ∣∣∣∣ ∫

Ω

f(x)− Q̂Xf
∣∣∣∣ ≤ Chβ‖f‖Wβ

2 (Ω).
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Proof. The result follows by the Cauchy-Schwarz inequality along with Lemma
1.∣∣∣∣ ∫

Ω

f(x) dx− Q̂X(f)

∣∣∣∣ =

∣∣∣∣ ∫
Ω

f(x) dx−
N∑
i=1

f(xi)ŵi

∣∣∣∣
≤
∫

Ω

|f(x)−
N∑
i=1

f(xi)bi(x)| dx ≤
√
µ(Ω)‖f − ÎXf‖L2(Ω)

≤ C
√
µ(Ω)hβ‖f‖Wβ

2 (Ω).

The Lagrange function quadrature rule was first proposed in [6] for manifolds
without boundary. The proposed quadrature method enabled the use of arbi-
trarily scattered data samples for quadrature on spheres. Although the quadra-
ture weights they proposed required solving a dense linear system, the local La-
grange basis provided a pre-conditioner for the quadrature weight system that
resulted in a practical quadrature routine [5, Section 7]. The Lagrange function
quadrature routine has been used for Galerkin methods for partial differential
equations on spheres in [9]. In [1], a quadrature rule for compact domains
was introduced by modifying the construction on manifolds. The quadrature
method we introduced is a modification of the method of [1].

The Lagrange function quadrature weights can be constructed without com-
puting the Lagrange functions. Let ϕ(r) denote the surface spline of order m
on Rn from equation (13). For a set of centers X ⊂ Ω, the Lagrange function
quadrature weights are constructed by solving the linear system(

T P
P T 0

)(
w
d

)
=

(
ν
η

)
(20)

where Ti,j = ϕ(‖xi − xj‖), Pi,l = pl(xi), νi =
∫

Ω
ϕ(‖x − xi‖) dx, ηl =∫

Ω
pl(x) dx and wi is the quadrature weight at xi. This requires solving a

dense, symmetric linear system of size O(N) where N is the number of centers.
The system (20) can be preconditioned by using the local Lagrange functions
as described in [6]. We present an alternative method of producing quadrature
weights by using the local Lagrange functions directly.

The local quadrature weights are constructed by computing the integrals of
the translates ϕ(‖x− xi‖). Recall that by equation (18)

bi(x) =
∑
y∈Υi

αy,xiϕ(‖x− y‖) +

nL∑
l=1

βl,ipl(x)

and consequently,

ŵi =
∑
y∈Υi

αy,xi

∫
Ω

ϕ(‖x− y‖) dx+

nL∑
l=1

βl,i

∫
Ω

pl(x) dx. (21)

The construction of the local quadrature weights does not require the solution
of a large linear system, in contrast to the quadrature method introducted in

10

S
an

di
a 

N
at

io
na

l L
ab

s 
S

A
N

D
 2

01
5-

05
11

J



[1]. However, (21) does require that the local Lagrange function coefficients are
computed before the weights can be constructed. After constructing the local
Lagrange functions, the weights can be assembled in parallel.

5. Galerkin Radial Basis Function Method

We propose a local Lagrange Galerkin method for the discretization of (11).
The stiffness matrix entries are evaluated by the local Lagrange quadrature
method introduced in Section 4. Applying the local Lagrange quadrature re-
sults in a sparse stiffness matrix, where the sparsity pattern is governed by the
horizon ε of the kernel. The quadrature formula for the entries requires a point-
wise evaluation of the kernel and multiplication by the quadrature weights. In
contrast, a piecewise polynomial finite element method for a Ω ⊂ Rn requires
the evaluation of 2n-iterated integrals over partial element volumes. The result-
ing quadrature problem is a nontrivial computational challenge. Issues relating
to integration over partial element volumes do not arise in the Galerkin radial
basis function method.

Previous work has explored a Galerkin radial basis function method using
full Lagrange functions and an associated Lagrange function quadrature rule
[1]. The difference between the method of [1] and our present work is in the
discretization space and the assembly of the quadrature weights. Assembling the
quadrature weights using the full Lagrange functions requires the solution of a
dense linear system of size O(N) where N is the number of basis functions in the
discretization. Furthermore, evaluating the solution required solving another
dense linear system of size O(N). In contrast, the local Lagrange function
method requires solving small linear systems of size O

(
log(N)n

)
for centers in

Rn.

5.1. Local Lagrange Discretization

Let Ω be an open region and ΩI be the corresponding interaction do-
main. Let X ⊂ Ω ∪ ΩI be a set of quasi-uniformly scattered centers with
mesh norm h. As described in Section 3.1, an extended set of centers X ′ ⊃
X can be constructed such that X ′ ∩

(
Ω ∪ ΩI

)
= X and h(X ′) = h, and

supx′∈X′,xi∈X ‖x
′ − xi‖ ≤ Kh| log(h)| for fixed integer K > 0. For each

xi ∈ X, we construct bi, the local Lagrange function centered at xi. Let
Vh = span{bi : xi ∈ Ω}. The space Vh 6⊂ L2

c(Ω ∪ ΩI) because elements in Vh
are necessarily nonzero in ΩI . To guarantee that the method is conforming, we
replace bi with b̃i = bi1Ω, where 1Ω is an indicator function for Ω. Since the
space Ṽh is conforming with respect to the bilinear form a from Equation (9),
there exists uh ∈ Ṽh such that a(uh, vh) =

∫
Ω
f(x)vh(x) dx for all vh ∈ Ṽh.

We demonstrate an error estimate which matches the interpolation error esti-
mate we expect from using the local Lagrange functions for interpolation of the
solution u.
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Proposition 1. Let u ∈ W k
2 (Ω) for k > n

2 be the solution to the nonlocal
problem (10). Let uh be the discrete solution from the restricted local Lagrange
method. Then, for sufficiently small h and for sufficiently large K,

‖u− uh‖L2(Ω∪ΩI) ≤ Chk‖u‖Wk
2 (Ω∪ΩI) (22)

Proof. By the Lax-Milgram theorem, the discrete solution uh satisfies ‖u −
uh‖L2(Ω∪ΩI) ≤ C infvh∈Uh ‖u− vh‖L2(Ω∪ΩI). By setting vh =

∑N
i=1 u(xi)b̃i, we

have

‖u− uh‖L2(Ω∪ΩI) ≤ C‖u−
N∑
i=1

u(xi)b̃i‖L2(Ω∪ΩI) = C‖u−
N∑
i=1

u(xi)bi‖L2(Ω)

≤ C‖u−
N∑
i=1

u(xi)bi‖L2(Ω∪ΩI).

Since u ∈ L2
c(Ω ∪ ΩI) it is compactly supported and hence we may apply

Lemma 1 to compute

‖u− uh‖L2(Ω∪ΩI) ≤ Chk‖u‖Wk
2 (Ω∪ΩI).

If we let Ai,j := a(b̃i, b̃j) denote the stiffness matrix generated by applying
the bilinear form to the local Lagrange functions, we demonstrate that the
condition number is bounded independent of the mesh norm h or the separation
radius q.

Lemma 3. The condition number of the discrete stiffness matrix A is bounded
above by a constant independent of h and q.

Proof. Let A denote the N × N symmetric stiffness matrix and let c ∈ RN .
Then,

〈Ac, c〉 =

N∑
i=1

( N∑
j=1

Ai,jci)cj

)
= a

( N∑
i=1

cib̃i,

N∑
j=1

cj b̃j

)
.

By the coercivity of the bilinear form and since
∑N
i=1 cib̃i ∈ L2

c(Ω ∪ ΩI), there
exists λ1, λ2 such that

λ1‖
N∑
i=1

cib̃i‖L2(Ω∪ΩI) ≤ a
( N∑
i=1

cib̃i,
N∑
j=1

cj b̃j

)
≤ λ2‖

N∑
i=1

cj b̃j‖L2(Ω∪ΩI).

It follows that since b̃i = 0 on ΩI and b̃i|Ω = bi,

λ1‖
N∑
i=1

cib̃i‖L2(Ω∪ΩI) = λ1‖
N∑
i=1

cibi‖L2(Ω).
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By [8, Proposition 5.3] and [8, Theorem 4.12], there exists CΩ and CΩ∪ΩI inde-
pendent of h and q such that

CΩq
n‖c‖`2(N) ≤ ‖

N∑
i=1

cibi‖L2(Ω) ‖
N∑
i=1

cibi‖L2(Ω∪ΩI) ≤ CΩ∪ΩIq
n‖c‖`2(N).

Then, we bound

cond(A) ≤ λmax(A)

λmin(A)
≤ CΩ∪ΩIλ2

CΩλ1
.

5.2. Assembling the stiffness matrix by quadrature

We discuss a practical method to assemble the elements of the discrete stiff-
ness matrix. We form the discrete stiffness matrix by evaluating a(b̃i, b̃j) for
each xi,xj ∈ X∩Ω. The integrals are computed by applying the local Lagrange

quadrature rule introduced in Section 4. The stiffness matrix Ai,j = a(b̃i, b̃j) is
approximated by

Ai,j ≈ 2δi,jŵi

∫
Ω∪ΩI

γ(x,xi) dx− 2ŵiŵjγ(xi,xj). (23)

The integral involving γ(x,xi) may be computed analytically for some kernels
or by quadrature. We compute the values bi from (11) by applying the Lagrange
function quadrature rule

bi ≈ f(xi)ŵi1Ω(xi). (24)

Applying the quadrature rule results in a sparse stiffness matrix. It follows
that Ai,j = 0 for centers such that ‖xi−xj‖ ≥ ε due to the compact support of
γ. The horizon ε of γ and the mesh norm h determines the number of nonzero
entries per row. If the quadrature rule is not used, the resulting stifness matrix is
dense due to the nonzero values the local Lagrange functions assume throughout
Ω. We demonstrate that the density of nonzero elements in the stiffness matrix
is bounded independent of h, q.

Lemma 4. Let {X}h,q be a collection of quasi-uniformly distributed centers in
Rn. Then, the ratio of the number of nonzero entries per row to the total number
of columns is bounded independent of h, q.

Proof. Fix X := Xh,q and fix xi ∈ X. Recall that ‖xi − xj‖ ≥ ε, Ai,j = 0 by
(23). Let Ni = {xj : ‖xj − xi‖ ≤ ε}. Let Cn denote the constant so that a ball
of radius r has volume Cnr

n. The number of nonzero entries on row i is the
same as the cardinality of Ni, which we compute by estimating the number of
centers in Ni. We bound the cardinality of Ni, denoted #Ni, above by noting
that every center is separated by at least q, so

Cn
(
#Ni

)
qn = ∪xj∈Niµ(B(xi, q)) ≥ µ

(
Bε(xi)

)
= Cnε

n

which implies #Ni ≤ εnq−n. The density per row is computed by #Ni
N ≤

εnq−n

N . We bound N by noting that we may cover Ω with balls of radius h by
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Ω ⊂ ∪xj∈XB(xj , h). Consequently, µ(Ω) ≤ NCnh
n, which implies N ≥ µ(Ω)

Cnhn
.

Therefore,
Ni
N
≤ εnq−n

µ(Ω)C−nn h−n
=
Cnε

n

µ(Ω)

hn

qn
.

The result follows by recalling that (16) bounds the mesh ratio h
q .

Let ũh denote the solution to the discretized linear system assembled by
quadrature from (23) and (24). Let uh denote the solution to the the problem
a(uh, vh) =

∫
Ω
f(x)vh(x) dx) as described in Section 5.1. We desire an estimate

that predicts the convergence rate of ũh to u in terms of h, as in Proposition 1.
However, this requires a thorough analysis of the affect of quadrature on the
solution to the resulting linear system of equations. By applying the triangle
inequality and Proposition 1, we may estimate

‖u− ũh‖L2 ≤ ‖u− uh‖+ ‖uh − ũh‖L2 ≤ Chk‖u‖Wk
2

+ ‖uh − ũh‖L2 .

Both uh and ũh are linear combinations of local Lagrange functions with co-
efficients {αi}Ni=1 and {α̃i}Ni=1 respectively. In the numerical experiments we
present in Section 6, we only produce the coefficients {α̃i}Ni=1 since we apply
quadrature to assemble the linear system of equations. The error between uh
and ũh may be quantified by

‖uh − ũh‖L2 = ‖
N∑
i=1

(αi − α̃i)bi‖L2 ≤ Cqn‖αi − α̃i‖`2(N).

We do not currently have an estimate to bound ‖αi− α̃i‖`2(N). Despite the lack
of theoretical justification, we demonstrate in Section 6 that the discrete solution
produced by solving the linear system assembled by using quadrature follows
an estimate of the form in Proposition 1. These results suggest ‖u − ũh‖L2 ∼
‖u− uh‖L2 ≤ Chk‖u‖Wk

2
.

6. Numerical Results

We present numerical results for experiments using the discretization de-
scribed in Section 5. We discuss local Lagrange function construction, L2 error
computations, and condition number computations. We compare the theoreti-
cal prediction for L2 convergence and condition numbers with observed results
from numerical experiments. We consider solving two dimensional problems of
the form (10) with a radial kernel Φ and two different anisotropy functions κ;
see Section 6.1 and Section 6.2. For all tests we consider zero Dirichlet volume
constraints. The tests are computed on the set Ω∪ΩI where Ω = (0, 1)× (0, 1)
and ΩI = [− 1

4 ,
5
4 ] × [− 1

4 ,
5
4 ]\Ω. All computations are done in MATLAB and

the condition numbers of the sparse stiffness matrices are approximated by the
condest function. The sparse linear system is solved with either MATLAB’s
backslash operator or by conjugate gradient with a specified tolerance of 10−9.
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The number of iterations required for convergence for conjugate gradient did
not vary as h decreased.

The local Lagrange functions are constructed with linear combinations of
the surface spline ϕ(r) = r2 log(r). Each local Lagrange function is constructed
using approximately 11 log(N)2 nearest neighbor centers, where N is the total
number of centers in Ω ∪ ΩI . The stiffness matrix for the nonlocal problem
only requires Lagrange functions centered in Ω, although thin plate splines cen-
tered in ΩI are required for the construction of the local Lagrange functions as
described in Section 3.1.

A kernel γ(x,y) =
(
κ(x)+κ(y)

)
Φ(‖x−y‖) is chosen with fixed horizon ε and

a solution u ∈ L2
c(Ω∪ΩI) is chosen for each numerical experiment. The source

function f is manufactured by computing Lu(xi) = f(xi) for each center xi,
The values of f(xi) are computed by using tensor products of Gauss-Legendre
nodes to approximate the integral in Equation (3).

We study L2 convergence of the discrete solution by constructing sets of
uniformly spaced centers and sets of scattered centers with various mesh norms.
Uniformly spaced collections of centers Xh are constructed using grid spac-
ing h = .04, .02, .014, .008, and .006. Collections of scattered centers X̃h are
constructed by modifying centers in Xh by a random perturbation of magni-
tude at most 2h

15 . Local Lagrange functions for each collection of centers are
constructed to build the discretization space. The convergence of the discrete
solution uh to the solution u is measured by plotting the L2 norm of the error
‖uh − u‖L2(Ω∪ΩI) against the mesh norm h. We expect for u ∈ W k

2 (Ω ∪ ΩI)

that ‖u− uh‖L2(Ω) ≤ Chk‖u‖Wk
2 (Ω) by Proposition 1.

6.1. Linear Anisotropy Experiment

We choose solution a u and a kernel γ with anisotropy function κ and radial
function Φ given by

u(x) = sin(2πx1) sin(2πx2)1Ω(x)

κ(x) = 1 + x1 + x2

Φ(‖x− y‖) = exp

(
− 1

1− 1
ε2
‖x−y‖2

) (25)

and we discretize (10) with local Lagrange functions.
Figure 2 displays the observed L2 convergence rates with respect to the mesh

norm h for the uniformly spaced and scattered centers experiments. The log of
the computed L2 error versus the log of the mesh norm is presented along with
a best fit line to estimate the convergence order of the observed data. Table 1
displays the condition numbers of the discrete stiffness matrices. The observed
condition numbers of the stiffness matrices do not increase as the mesh norm
decreases, which matches the result of Lemma 3.
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Convergence O(h1.5)

(a) Uniformly Spaced Centers

0.006 0.008 0.014 0.02 0.04
0.0001

0.001

0.01

 

 
L2error

Convergence O(h1.5)

(b) Scattered Centers

Figure 2: The log of h versus the log of the L2 error for the linear anisotropic experiment
with functions given by (25) is displayed.

6.2. Exponential Anisotropy Experiment

We choose solution a u and a kernel γ with anisotropy function κ and radial
function Φ given by

u(x) =

(
x1(x1 − 1)

) 3
2
(
x2(x2 − 1)

) 3
2

1Ω(x)

κ2(x) = exp(x1 + x2)

Φ(‖x− y‖) = exp

(
− 1

1− 1
ε2
‖x−y‖2

) (26)

and we discretize (10) with local Lagrange functions.
Figure 3 displays the L2 convergence plots for the experiments involving u2

and κ2. The L2 error rate matches the expected convergence rate predicted
by Proposition 1. The expected h2 order convergence is observed in both the
uniformly spaced centers and the scattered centers experiments. Table 1 displays
the condition numbers for the discrete stiffness matrices of various values for h.
The condition numbers of the discrete stiffness matrices do not increase as the
mesh norm decreases, which matches the prediction in Lemma 3.

6.3. Vanishing Nonlocality

We present numerical results for experiments that investigate the effects of
shrinking the horizon ε. As discussed following (4), the solution of the nonlocal
problem converges to the solution of (4) as ε decreases. We consider anisotropic
kernels of the form

γε(x,y) =
1

ε3
(
κ(x) + κ(y)

)
Φ(

1

ε
‖x− y‖), (27)

where Φ(1
ε ‖x‖) is a compactly supported radial function with support radius ε.

We investigate approximating the solution to an anisotropic differential equa-
tion by solving an anisotropic nonlocal problem with sufficiently small horizon ε.
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L2error

Convergence O(h2)
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Figure 3: The log of h versus the log of the L2 error for the exponential anisotropy experiment
with functions given by (26) is displayed.

Table 1: The mesh norm h, number of rows n of the stiffness matrix, and the estimated
condition number for the stiffness matrix with the linear anisotropy (25) and the exponential
anisotropy (26). The condition numbers of the stiffness matrices does not increase as h
decreases.

Approximate Condition Number

h n Linear Exponential
2.83e-2 625 58 89
1.41e-2 2500 59 90
9.9e-3 5041 59 90
5.7e-3 15625 60 92
4.2e-3 27889 60 92
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Numerical experiments demonstrate that the discrete solution to the anisotropic
nonlocal problem converges to the solution of the anisotropic differential equa-
tion.

A Taylor series expansion argument can be used to find the differential op-
erator D that the nonlocal operator approximates in the small horizon limit.
We assume that κ, u : R → R are smooth functions. Then, for fixed x ∈ Ω, we
apply a Taylor series expansion in a ball Bε(x) to obtain for some ζ, η ∈ Bε(x)

u(y)− u(x) = u′(x)(y − x) +
1

2
u′′(x)(y − x)2 +

1

6
u′′(ζ)(y − x)3

κ(x) + κ(y) = 2κ(x) + κ′(x)(y − x) + κ′′(x)(y − x)2 +
1

6
κ′′(η)(y − x)3.

If we denote by Lε the nonlocal operator with kernel γε, then for smooth u, it
follows that

Lεu(x) =
1

ε3
(
2u′(x)κ(x)

∫ ε

−ε
zΦ(

1

ε
|z|) dz + u′(x)κ′(x)

∫ ε

−ε
zΦ(

1

ε
|z|)dz

)
+

1

ε3
(
2u′′(x)κ(x)

∫ ε

−ε
z2Φ(

1

ε
|z|) dz + u′′(x)κ′(x)

∫ ε

−ε
z3Φ(

1

ε
|z|) dz + ...

)
where we have truncated the expression to exclude any of the (y − x)3 terms.
The zΦ( 1

ε |z|) integrals vanish since zΦ( 1
ε |z|) is an odd function. We exclude the

z3 integrals since
1

ε3

∫ ε

−ε
z3Φ(

1

ε
|z|) ≤ 1

2
ε‖Φ‖L∞(Ω),

which is O(ε). Eliminating these terms, we compute

Lεu(x) ≈ 2
(
u′(x)k′(x) + u′′(x)k(x)

) ∫ ε

−ε
z2Φ(

|z|
ε

) dz

= 2
(
u′(x)k′(x) + u′′(x)k(x)

) ∫ 1

−1

τ2Φ(|τ |)dτ.

Therefore, as ε decreases to zero,

Lεu(x)→ ρ
(
u′(x)k′(x) + u′′(x)k(x)

)
ρ := 2

∫ 1

−1

τ2Φ(|τ |) dτ

We numerically experiment with a Lagrange function discretization to solve
the problem Lεuε = f for anisotropic nonlocal operators. Let u denote the
solution to Du = f and let h be a given mesh norm. We solve Lεuε = f by
discretizing the problem with Lagrange functions to construct an approximate
solution uε,h. We numerically demonstrate that as ε→ 0, ‖u− uε,h‖L2(Ω∪ΩI) ∼
O(ε2).
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(a) κ(x, y) = exp(x+ y)
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(b) κ(x, y) = 1 + x+ y

Figure 4: The log of ε vs. the log of the L2 error of the discrete solution uε,h is plotted. As ε
goes to zero, we observe ε2 convergence.

We let Φ( 1
ε ‖x‖) =

(
1 − 1

ε2 ‖x‖
2)1‖x‖<ε(x) and we consider two separate

anisotropy functions κ(x, y). We first consider a case of a linear anisotropic
function of the form κ1(x, y) = 1 + x+ y and κ2(x, y) = exp(x+ y). We set γε
as in (27) with the two choices for κ. The mesh norm h = .000075 is fixed for
the experiments and we consider a range of ε values from .075, .0625, .05, .04,
and .035. We discretize the problem Lεuε = f with Lagrange functions and a
discrete solution uε,h is computed as described in Section 5.

We choose

u(x) =
(
1− cos(2πx)

)
1[0,1](x) (28)

and we analytically compute Du = f , where D is the differential operator that
Lε converges to. We compute,

f(x) =

{
−2π

(
sin(2πx) + 2π(1 + x) cos(2πx)

)
for κ1

− exp(x)
(
2π sin(2πx) + 4π2 cos(2πx)

)
for κ2

In contrast to the experiments in Section 6.1 and Section 6.2, the source function
f is fixed, h is fixed, and ε changes. The function f is chosen to be the solution
to the problem Du = f , where u is the fixed function (28). As can be seen in
Figure 4, for both κ1 and κ2, the L2 error ‖u − uε,h‖L2[0,1] converges at about
O(ε2). The numerical results suggest it is possible to approximate the solution
to an anisotropic differential equation by discretizing and solving an anisotropic
nonlocal volume constrained equation.
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